对于高阶无穷小o(a),怎么理解,是0?还是理解为一个函数?还有计算o(a)+o(b)=o (c),x趋近于0,怎么证

问题描述:

对于高阶无穷小o(a),怎么理解,是0?还是理解为一个函数?还有计算o(a)+o(b)=o (c),x趋近于0,怎么证

高阶无穷小,首先它是无穷小量,就是极限为零的变量,当然数零是无穷小量,但是无穷小量绝对不是只有数零.
高阶无穷小,是首先要有两个无穷小来进行一个比较,如果这两个无穷小比值的极限为零,就称分子上的无穷小是分母上的无穷小的高阶无穷小.
至于你问的证明题,我是不大明白的,你的a,b,c和x是什么关系呢,我觉得说清楚才可以证明吧.