解方程组:x^2+3xy+y^2+2x+2y=8 2x^2+2y^2+3x+3y=14
问题描述:
解方程组:x^2+3xy+y^2+2x+2y=8 2x^2+2y^2+3x+3y=14
答
x*2+3xy+y*2+2x+2y=8 (1) → 2x*2+6xy+2y*2+4(x+y)=16 .(2)2x*2+2y*2+3x+3y=14 (3)(2)-(3) 得出 6xy+(x+y)=2 (4)(2)×3-(3)×4 得出 x*2+y*2-9xy=4 即 -11xy+(x+y)*2=4.(5)(5)×6+(4)×11 得 6(x+y)*2+11(x+y)-46=0...