已知a,b,c是△ABC的三边长,且方程a(1+x2)+2bx-c(1-x2)=0的两根相等,则△ABC的形状是:_.

问题描述:

已知a,b,c是△ABC的三边长,且方程a(1+x2)+2bx-c(1-x2)=0的两根相等,则△ABC的形状是:______.

原方程整理得(a+c)x2+2bx+a-c=0,
因为两根相等,
所以△=b2-4ac=(2b)2-4×(a+c)×(a-c)=4b2+4c2-4a2=0,
即b2+c2=a2
所以△ABC是直角三角形.
故答案为:直角三角形.