高中函数y=Asin(ωx+φ)的图象

问题描述:

高中函数y=Asin(ωx+φ)的图象
下列结论正确的是(D)
1.若函数y=cos(2x+φ)的图象关于点(π/3,0)中心对称,φ=-π/6+2kπ,k∈z
2.若点(x0,0)是函数y=tanx的图象的对称中心,则x0=kπ,k∈z
3.若直线x=x0是函数f(x)=sin(ωx+φ)图像的对称轴,则f(x0)=1
4.若f(x0)=-1,则直线x=x0是函数f(x)=sin(ωx+φ)的图象的对称轴
请告诉我A、B、C选项错在哪?

1.若函数y=cos(2x+φ)的图象关于点(π/3,0)中心对称,φ=-π/6+2kπ,k∈z
正确的应为φ=-π/6+kπ
因为函数y=cos(2x+φ)的图象关于点(π/3,0)中心对称
那么2*π/3+φ=π/2+kπ
从而解得φ=-π/6+kπ
2..若点(x0,0)是函数y=tanx的图象的对称中心,则x0=kπ,k∈z
正确的应为x0=kπ/2
你画图就能看出了
3.若直线x=x0是函数f(x)=sin(ωx+φ)图像的对称轴,则f(x0)=1
正确的应为f(x0)=1或-1
因为直线x=x0是函数f(x)=sin(ωx+φ)图像的对称轴
那么ωx+φ=π/2+kπ
于是,f(x0)=1或-1