若平面向量a,b,c两两所成的角为120度,|a|=|b|=2|c|=2,则|a+b+c|=?
问题描述:
若平面向量a,b,c两两所成的角为120度,|a|=|b|=2|c|=2,则|a+b+c|=?
答
|a+b+c|²=a²+b²+c²+2ab+2bc+2ca=1²+2²+3²+2IaIIbIcosθ1+2IbIIcIcosθ2+2IcIIaIcosθ3
=1²+2²+3²+2x1x2·cosθ1+2x2x3·cosθ2+2x3x1·cosθ3
当两两所成角相等:θ1=θ2=θ3=0°时,|a+b+c|²=36,∴|a+b+c|=6
当两两所成角相等:θ1=θ2=θ3=120°时,|a+b+c|²=3,,∴|a+b+c|=√3
故|a+b+c|的长度为√3或6.
答
|a+b+c|^2
=|a|+|b|^2+|c|^2 + 2(a.b+b.c+c.a)
=4+4+1+2(4+2+2)(-1/2)
=1
|a+b+c|=1
答
|a+b+c|²
=|a|²+|b|²+|c|²+2a*b+2b*c+2c*a
=4+4+1-4-2-2
=1
得|a+b+c|=1