f(0)=0,且f'(0)存在,证明limx^f(x)=1,(x-----0+)

问题描述:

f(0)=0,且f'(0)存在,证明limx^f(x)=1,(x-----0+)

lim f(x)*lnx=lim (f(x)/x)*(xlnx) =lim(f(x)-f(0))/x * lim(xlnx) =f'(0) * 0 =0
so limx^f(x)=1