用换元法解方程8(x2+2x)x2-1+3(x2-1)x2+2x=11时若设x2-1x2+2x=y,则可得到整式方程是(  ) A.3y2-11y+8=0 B.3y2+8y=11 C.8y2-11y+3=0 D.8y2+3y=11

问题描述:

用换元法解方程

8(x2+2x)
x2-1
+
3(x2-1)
x2+2x
=11时若设
x2-1
x2+2x
=y
,则可得到整式方程是(  )
A. 3y2-11y+8=0
B. 3y2+8y=11
C. 8y2-11y+3=0
D. 8y2+3y=11

x2-1
x2+2x
=y代入原方程,得:
8
y
+3y=11.
方程两边同乘以y得:3y2-11y+8=0.
故选A.