《离散数学》 试证明群的两个子群的交集也构成的子群.

问题描述:

《离散数学》 试证明群的两个子群的交集也构成的子群.

这个很容易证明啊比如现在I和J都是G的子群,那么取任意的x,y∈I∩J,都有xy∈I∩J,原因很简单:x,y∈I∩J说明x,y∈I且x,y∈J.由x,y∈I得到xy∈I,由x,y∈J得到xy∈J.所以xy∈I∩J.然后对于任意的x∈I∩J,也能得到x^-1∈...