如图所示,已知n边形A1A2A3A4A5.An,求证:∠A1+∠A2+∠A3+∠A4+∠A5+...∠An=(n-2)乘180°.
问题描述:
如图所示,已知n边形A1A2A3A4A5.An,求证:∠A1+∠A2+∠A3+∠A4+∠A5+...∠An=(n-2)乘180°.
答
证明:从n边形A1A2A3A4A5.An内部任选一点O,向所有顶点连线,分别是A1O,A2o,A3O,...,AnO一共n条线段这样得到△A1OA2,△A2OA3,△A30A4,...,△A(n-1)OAn,△AnOA1一共n个三角形,于是求得n边形A1A2A3A4A5.An内角和=∠A1+...