求不定积分:∫x^2dx/根号(a^2-x^2)=
问题描述:
求不定积分:∫x^2dx/根号(a^2-x^2)=
答
令x=asint,则dx=acost dt∫x²/√(a²-x²) dx=∫a²sin²t/(acost)·acost dt=a²∫sin²t dt=a²∫(1-cos2x)/2 dt=a²[t-1/4·sin2x]+C=a²[arcsin(x/a)-1/2·x/a·√(1-...答案是a^2/2(arcsin(x/a)-x√(a^2-x^2)/a^2)+c.....刚忘记发了。。。我就是用你的方法来做的然后做到a²∫(1-cos2x)/2 dt 再往后做就做不对了= =!令x=asint,则dx=acost dt∫x²/√(a²-x²) dx=∫a²sin²t/(acost)·acost dt=a²∫sin²t dt=a²∫(1-cos2x)/2 dt=a²[t/2-1/4·sin2x]+C=a²[arcsin(x/a)/2-1/2·x/a·√(1-x²/a²)]+C=a²/2·arcsinx/a-1/2·x√(a²-x²)+C