(a+b分之a-b-a-b分之a+b)除以(1-a²-2ab+b²分之a²+b²)
问题描述:
(a+b分之a-b-a-b分之a+b)除以(1-a²-2ab+b²分之a²+b²)
答
[(a-b)/(a+b)-(a+b)/(a-b)]/[(1-(a^2+b^2)/(a^2-2ab+b^2)]
=[(a-b)/(a+b)-(a+b)/(a-b)]/[(a^2-2ab+b^2-a^2-b^2)/(a^2-2ab+b^2)]
=[(a-b)^2/(a+b)(a-b)-(a+b)^2/(a+b)(a-b)]/[(-2ab)/(a^2-2ab+b^2)]
={[(a-b)^2-(a+b)^2]/(a+b)(a-b)}/[(-2ab)/(a-b)^2]
={[a^2-2ab+b^2-a^2-2ab-b^2]/(a+b)(a-b)}/[(-2ab)/(a-b)^2]
=[-4ab(a+b)(a-b)]/[(-2ab)/(a-b)^2]
=4ab/(a+b)(a-b)*(a-b)^2/2ab
=2/(a+b)*(a-b)
=2(a-b)/(a+b)