一共3小题,
问题描述:
一共3小题,
1.已知 sina +sinb +sinc =o,cosa +cosb+ cosc=o
求 cos(b-a)的值
2.求函数 y= (2+cosx)/(2-cosx) 的最大值
3.若 2sin2x + cos2x =1 (x 不等于 kx ,k为整数)
则 [2(cosx)^2+sin2x]/(1+tanx) 的值为?
第3题 (x 不等于 k pai ,k为整数)
答
1.因为(sinc)^2=(sina+sinb)^2=(sina)^2+2sina*sinb+(sinb)^2,同理(cosc)^2=(cosa)^2+2cosa*cosb+(cosb)^2,所以相加得1=1+2(cosa*cosb+sina*sinb)+1,所以cos(a-b)=-1/2 2.y=(2+cosx)/(2-cosx) y=-1+4/(2-cosx) 1>co...