设抛物线y2=2px(p>0)的焦点为F,其准线与x轴交于点C,过F作它的弦AB,若∠CBF=90°,则|AF|-|BF|的长为(  ) A.2p B.p C.p2 D.4p

问题描述:

设抛物线y2=2px(p>0)的焦点为F,其准线与x轴交于点C,过F作它的弦AB,若∠CBF=90°,则|AF|-|BF|的长为(  )
A. 2p
B. p
C.

p
2

D. 4p

假设k存在,设AB方程为:y=k(x-

p
2
),
与抛物线y2=2px(p>0)联立得k2x2-(k2+2)px+
k2p2
4
=0,
设两交点为A(x2,y2),B(x1,y1),
∵∠CBF=90°,∴(x1-
p
2
)(x1+
p
2
)+y12=0,
∴x12+y12=
p2
4
,∴x12+2px1-
p2
4
=0(x1>0),∴x1=
5
−2
2
p,
∵x1x2=
p2
4
,∴x2=
2+
5
2
p

∴|AF|-|BF|=(x2+
p
2
)-(x1+
p
2
)=2p,
故选:A.