要制作一个容积为96πm3的圆柱形水池,已知池底的造价为30元/m2,池子侧面造价为20元/m2.如果不计其他费用,问如何设计,才能使建造水池的成本最低?最低成本是多少?

问题描述:

要制作一个容积为96πm3的圆柱形水池,已知池底的造价为30元/m2,池子侧面造价为20元/m2.如果不计其他费用,问如何设计,才能使建造水池的成本最低?最低成本是多少?

设池底半径为r,池高为h,成本为y,则:
96π=πr2h⇒h=

96
r2
 …(2分)
y=30πr2+20×2πrh=10πr(3r+4h)=30π(r2+
128
r
) …(4分)
y'=30π(2r-
128
r2
)         …(5分)
令y'=30π(2r-
128
r2
)=0,得r=4,h=6 …(6分)
又r<4时,y'<0,y=30π(r2+
128
r
)是减函数; …(7分)
r>4时,y'>0,y=30π(r2+
128
r
)是增函数; …(8分)
所以r=4时,y=30π(r2+
128
r
)的值最小,最小值为1440π…(9分)
答:当池底半径为4米,桶高为6米时,成本最低,最低成本为1440π元.…(10分)