等价无穷小求极限时,运用于加减法时受到什么限制?

问题描述:

等价无穷小求极限时,运用于加减法时受到什么限制?
如果是有穷项的加减法运用等价无穷时替换,什么时候不能用?比如说,(tanx-sinx)/(x^3)就不能替换tanx和sinx,有人说是替换好后+或-等于0,那就不能使用.也就是说替换好后加减不等于0就可以用等价无穷小做极限?这种规律是否正确?不正确能否说明白点?

tanx=x+o1(x)
sinx=x+o2(x)
tanx-sinx=o3(x) 即x的高阶无穷小 但是你不知道o(x)到底是x^2的等价无穷小 还是x^3的等价无穷小 或者是x^4的等价无穷小所以就无法判断了
这种方法是正确的 但是有些情况下判断不出来而已