已知集合A={x|x2+ax+1≤0},B={x|x2-3x+2≤0},且A⊆B,求实数a的取值范围.

问题描述:

已知集合A={x|x2+ax+1≤0},B={x|x2-3x+2≤0},且A⊆B,求实数a的取值范围.

由题意A={x|x2+ax+1≤0},B={x|x2-3x+2≤0}={x|1≤x≤2},
又A⊆B
若A是空集,显然符合题意,此时有△=a2-4<0,解得-2<a<2
若A不是空集,即△=a2-4≥0,解得a≥2或a≤-2
此时有

1+a+1≥0
4+2a+1≥0
−1≤−
a
2
≤−2
解得a=-2
故此时有-2≤a<2 
综上知-2≤a<2