如图,已知CB、CD分别是钝角△AEC和锐角△ABC的中线,且AC=AB,给出下列结论:①AE=2AC;②CE=2CD;③∠ACD=∠BCE;④CB平分∠DCE,则以上结论正确的是( ) A.①②④ B.①③④ C.①②③ D.①②③④
问题描述:
如图,已知CB、CD分别是钝角△AEC和锐角△ABC的中线,且AC=AB,给出下列结论:①AE=2AC;②CE=2CD;③∠ACD=∠BCE;④CB平分∠DCE,则以上结论正确的是( )
A. ①②④
B. ①③④
C. ①②③
D. ①②③④
答
①∵CB是三角形ACE的中线,
∴AE=2AB,又AB=AC,∴AE=2AC.故此选项正确;
②取CE的中点F,连接BF.
∵AB=BE,CF=EF,
∴BF∥AC,BF=
AC.1 2
∴∠CBF=∠ACB.
∵AC=AB,
∴∠ACB=∠ABC.
∴∠CBF=∠DBC.
又CD是三角形ABC的中线,
∴AC=AB=2BD.
∴BD=BF.
又BC=BC,
∴△BCD≌△BCF,
∴CF=CD.
∴CE=2CD.
故此选项正确.
③若要∠ACD=∠BCE,则需∠ACB=∠DCE,又∠ACB=∠ABC=∠BCE+∠E=∠DCE,则需∠E=∠BCD.
根据②中的全等,得∠BCD=∠BCE,则需∠E=∠BCE,则需BC=BE,显然不成立,故此选项错误;
④根据②中的全等,知此选项正确.
故选A.