若a2−3a+1+b2+2b+1=0,则a2+1/a2−|b|=_.
问题描述:
若
+b2+2b+1=0,则a2+
a2−3a+1
−|b|=______. 1 a2
答
∵
+b2+2b+1=0,
a2−3a+1
∴
+(b+1)2=0,
a2−3a+1
∴a2-3a+1=0,b+1=0,
∴a+
=3,1 a
∴(a+
)2=32,1 a
∴a2+
=7;1 a2
b=-1.
∴a2+
−|b|=7-1=6.1 a2
故答案为:6.