在以d为公差的等差数列(an)中,设S1=a1+a2+...+an,S2=a(n+1)+a(n+2)+...+a(2n),S3=a(2n+1)+a(2n+2)+...+a(3n),求证S1,S2,S3也是等差数列,并求其公差

问题描述:

在以d为公差的等差数列(an)中,设S1=a1+a2+...+an,S2=a(n+1)+a(n+2)+...+a(2n),S3=a(2n+1)+a(2n+2)+...+a(3n),求证S1,S2,S3也是等差数列,并求其公差
注:a后面括号里的内容为a的下标

a(n+1)=a1+nd
所以a(n+1)-a1=nd
同理
a(n+2)-a2=nd
……
a2n-an=nd
所以S2-S1=n*nd=n²d
a(2n+1)-a(n+1)=(an+2nd)-(a1+nd)=nd
则a(2n+2)-a(n+2)=nd
……
所以S3-S2=n²d
所以 S3-S2=S2-S1
所以S1,S2,S3也是等差数列
公差=S2-S1=n²d