高数格林公式问题.计算I = ∫L [(x+4y)dy+(x-y)dx] / (x^2+4*y^2) 其中L为单位圆 x^2+y^2 = 1的正向
问题描述:
高数格林公式问题.计算I = ∫L [(x+4y)dy+(x-y)dx] / (x^2+4*y^2) 其中L为单位圆 x^2+y^2 = 1的正向
计算I = ∫L[(x+4y)dy+(x-y)dx] / (x^2+4*y^2) 其中L为单位圆 x^2+y^2 = 1的正向
答
取充分小的正数e,在单位圆内做椭圆x^2+4y^2=e^2,方向为逆时针方向,记为S+S包围区域为D,其长轴为e,短轴为e/2,面积为pi*e^2/2.原积分=∫L Pdx+Qdy=∫L并S- Pdx+Qdy --∫S- Pdx+Qdy第一个用格林公式注意到ap/ay=aQ/...