三角函数在物理的运用

问题描述:

三角函数在物理的运用
在做高一物理的时候不懂三角函数sin cos tan 什么的 总是看见Fsin 什么什么的 因为以前初中没念三角函数就知道对边比临边什么的 所以现在看见什么Fsin什么的很无解 求解释不要嘲笑我
10.如图所示,质量为 M 的木锲倾角为θ角,在水平面上保持静止,当将一质量为 m 的木块放在木锲的斜面上时,正好能够匀速下滑.如果用沿与斜面成α 角的拉力 F 拉着木块匀速上升,木锲在上述过程始终保持静止.试求:
(1) 拉力 F 的最小值.
(2) 拉力F最小时,水平面对木锲的摩擦力大小.问题补充:
木块匀速下滑:mgsinθ=(U1)mgcosθ
上升:Fcosα =(U1)(mgcosθ-Fsinα )
整体:Fcos(α +θ)

我就简单说一下吧.一个直角三角形里面对于角A来说sinA就是A对的边a与斜边c的比值a/c,cosA就是A的直角边临边b与斜边c的比值b/c,tanA就是A的对边a与邻边b的比值a/b.
楼主可能不太懂矢量和平行四边形法则.力是一个矢量,它有大小有方向.两个矢量加法就是把它们起点放在一起以后,以它们为平行四边形临边作一个平行四边形,那么从相同顶点出发的对角线就是它们的和矢量.反过来知道一个力也可以看成其他两个力的加法,这就是矢量分解.你问的这道题就是mg(重力)分解到沿斜面向下和垂直于斜面两个方向的矢量相加.分解到两个垂直方向的力,那么这两个力构成的平行四边形是一个矩形,合力是mg,那么求其中那个沿斜面向下的分力的大小该怎么求呢,用三角函数.分力Fx/mg=sinθ,θ是斜面的倾斜角度,可以看出来重力mg和斜面表面方向夹角也是θ.所以Fx=mgsinθ就是这样来的.
我只能说到这个程度,具体还是要好好看看课本上面矢量、力的分解和合成、平行四边形法则、受力平衡等概念,以及三角函数有关的数学书.