高二数学:已知平面向量a,b,c满足|a|=|b|=|c|≠0,且|a-b|=2|b-c|=1,则b*(a-c)=

问题描述:

高二数学:已知平面向量a,b,c满足|a|=|b|=|c|≠0,且|a-b|=2|b-c|=1,则b*(a-c)=

|a-b|²=1 ===>>> |a|²-2a*b+|b|²=1 ===>>> 2|b|²-2a*b=1 ==>>>2b*b-2a*b=1 ==>>b*(a-b)=1/2|b-c|²=1/16 ==>> |b|²-2b*c+|c|²=1/16 ==>>> |b|²-2b*c+|b|²=1...