杠杆支点受力求解

问题描述:

杠杆支点受力求解
当支点在杠杆中点时支点受力大 还是支点靠近一端时?
注:杠杆完全相同 且一端力相等
我在家试了 是支点靠近一端时支点受力大啊

情形设定:
一个坚固的三角形支点;一个物体重G,将要被撬起,作为阻力的来源,施力点在杆子的一端,一个没有质量的杆子长度是L,人的施力点在杆子另一端,作为动力撬起物体,现在研究支点在杆子何处受到得压力力最大和最小.
研究手段:
就是受力平衡
问题讨论:
1.鉴于力有大小和方向,需要进行力(动力和阻力)的分解,把有效的力合成到支点上,得到支点所受的压力.
2.支点受到的杆子的压力就是它对杆子的支撑力,这个力方向大体朝上,随着杆子的撬动,但是支撑力的方向一直垂直于杆子;另外支点处需要有摩擦力.
3.所以随着杆子的撬动,支点处所受压力会变化,无论支点在哪里.
简化模式:
保持杆子处于水平状态的杠杆平衡状态,物体的重力A(阻力)和手的压力B(动力)的方向都是垂直杆子向下(杆子是水平的),支点对杆子的支撑力C(就是支点所受的压力)的方向垂直杆子向上,所以无需力的分解和合成,那么A+B=C.现在A是不变的,B随着支点的不同(受杠杆平衡条件制约)而变化.由于是垂直方向,所以摩擦力不用考虑.
结论:
支点距离物体越近支点所受压力越小(因为省力杠杆B小),
支点距离动力施力点越近支点所受压力越大(因为费力杠杆B大),
当支点在杆子中间,因为A=B所以支点所受压力是物体重力的两倍(因为是等臂杠杆).
备注:
在杆子不是水平的状态下,受力分析也比较简单,只是说起来比较繁琐,省略.