任意一个锐角三角形△ABC,证明△ABC里面必定存在一点D,使得不等式:AD + BD + CD
问题描述:
任意一个锐角三角形△ABC,证明△ABC里面必定存在一点D,使得不等式:AD + BD + CD
数学人气:974 ℃时间:2019-08-21 13:04:45
优质解答
分析:只要构造出来就行了.
构造:设AB、AC是较短的两边,设AB、AC上的高分别为:CE、BF
分别作AB关于BF的对称线BG以及AC关于CE的对称线CH,
则BG与CH的交点即为所求.
证明:由于角BAC是锐角,又是最大角(AB、AC是较短的两边),
故90度-角A=(1/2)(180度-角A-角A)=(1/2)(角B+角C-角A)
构造:设AB、AC是较短的两边,设AB、AC上的高分别为:CE、BF
分别作AB关于BF的对称线BG以及AC关于CE的对称线CH,
则BG与CH的交点即为所求.
证明:由于角BAC是锐角,又是最大角(AB、AC是较短的两边),
故90度-角A=(1/2)(180度-角A-角A)=(1/2)(角B+角C-角A)
我来回答
类似推荐
答
分析:只要构造出来就行了.
构造:设AB、AC是较短的两边,设AB、AC上的高分别为:CE、BF
分别作AB关于BF的对称线BG以及AC关于CE的对称线CH,
则BG与CH的交点即为所求.
证明:由于角BAC是锐角,又是最大角(AB、AC是较短的两边),
故90度-角A=(1/2)(180度-角A-角A)=(1/2)(角B+角C-角A)