已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是( ) A.圆 B.椭圆 C.双曲线的一支 D.抛物线
问题描述:
已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是( )
A. 圆
B. 椭圆
C. 双曲线的一支
D. 抛物线
答
∵|PF1|+|PF2|=2a,
|PQ|=|PF2|,
∴|PF1|+|PF2|=|PF1|+|PQ|=2a.
即|F1Q|=2a.
∴动点Q到定点F1的距离等于定长2a,
∴动点Q的轨迹是圆.
故选A