已知f(x)=-x3+ax在(0,1)是增函数,求实数a的取值范围.(不能用导数解)

问题描述:

已知f(x)=-x3+ax在(0,1)是增函数,求实数a的取值范围.(不能用导数解)

∵f(x)=-x3+ax在(0,1)是增函数,设1>x2>x1>0,
f(x2)-f(x1)=-x23+ax2-(-x13+ax1)=x13-x23+a(x2-x1
=(x2-x1)[-(x12+x1•x2+x22)+a(x2-x1)]=(x2-x1)[-(x12+x1•x2+x22)+a].
要使f(x)=-x3+ax在(0,1)上是增函数,
应有-( x12+x1•x2+x22 )+a≥0,即 a≥x12+x1•x2+x22
由于1>x2>x1>0,可得 x12+x1•x2+x22<3,∴a≥3,
即a的范围为[3,+∞).