求f(x)=x2-2ax-1在区间[0,2]上的最大值和最小值.
问题描述:
求f(x)=x2-2ax-1在区间[0,2]上的最大值和最小值.
答
f(x)=(x-a)2-1-a2,对称轴为x=a.
①当a<0时,由图①可知,
f(x)min=f(0)=-1,
f(x)max=f(2)=3-4a.
②当0≤a<1时,由图②可知,
f(x)min=f(a)=-1-a2,f(x)max=f(2)=3-4a.
③当1≤a≤2时,由图③可知,
f(x)min=f(a)=-1-a2,
f(x)max=f(0)=-1.
④当a>2时,由图④可知,
f(x)min=f(2)=3-4a,
f(x)max=f(0)=-1.
综上所述,
当a<0时,f(x)min=-1,f(x)max=3-4a;
当0≤a<1时,f(x)min=-1-a2,f(x)max=3-4a;
当1≤a≤2时,f(x)min=-1-a2,f(x)max=-1;
当a>2时,f(x)min=3-4a,f(x)max=-1.