已知整除5a6b7c8d9e能被11整除,则满足条件时a+b+c+d+e=

问题描述:

已知整除5a6b7c8d9e能被11整除,则满足条件时a+b+c+d+e=
只要答案

能被11整数的数的特征是:奇数位和与偶数位和相减能被11整除.
所以这里:5+6+7+8+9-(a+b+c+d+e)=11k
(a+b+c+d+e)=35-11k
有以下几种可能:
k=0,为35
k=1,为24
k=2,为13
k=3,为2
不是唯一的和我只要一个,只要说出数字。随便选一个吧你说一个,只要是对的就好。please!35