如图,两平面镜所成的角为θ.一束光线由点P发出,经OB,OA两次反射后回到点P.已知PQ∥OA,PR∥OB,判断△OQR的形状.

问题描述:

如图,两平面镜所成的角为θ.一束光线由点P发出,经OB,OA两次反射后回到点P.已知PQ∥OA,PR∥OB,判断△OQR的形状.

∵PQ∥OA,
∴∠BQP=∠O=θ.
∴∠BQP=∠OQR=θ.
又∵PR∥OB,
∴∠PRA=∠O=θ,
∴∠QRO=∠PRA=θ.
∵∠QRO+∠OQR+∠QOR=180°,
∴3θ=180°.
∴θ=60°.
∴∠QRO=∠QOR=60°.
∴△OQR是等边三角形.