3道分式的运算题目
3道分式的运算题目
1.如果分式(1/x)+(1/y)=1/(x+y),那么分式(y/x)+(x/y)的值为( )
A.1 B.2 C.-1 D.-2
不知道这样大家看不看得明白,真是抱歉!最好能把运算过程写详细点.
2.(X的平方+2X)/(1+X)÷{X-[2/(X+1)]} (计算题)
3.已知(X的平方-4X+1)=0.求:(1)[X的平方+1/X的平方);
(2)X的平方/(X的4次方+X的平方+1)
各位对不起了,题目写得不清不楚的,
/这个是÷
1、
(1/x)+(1/y)
= (x+y)/(xy)
= 1/(x+y)
所以:(x+y)^2 = xy(注:这道题的x和y要涉及到复数,在实数范围内(x+y)^2 = xy无解)
即:x^2 + y^2 = -xy
所以:(y/x)+(x/y) = (x^2+y^2)/xy = -xy/xy = -1
2、
X-[2/(X+1)]
= (x^2+x-2) / (x+1)
= [ (x-1)(x+2) ] / (x+1)
所以:
[(x^2+2x)/(x+1)]÷{X-[2/(X+1)]}
= [ x(x+2)/(x+1) ] × { (x+1)/[(x-1)(x+2)] }
= x/(x-1)
3、
(1)
x^2 - 4x + 1 = 0
显然x不等于0,两边同除以x,得:
x - 4 + (1/x) = 0
即:x + (1/x) = 4
[ x + (1/x) ]^2 = x^2 + 2 +(1/x^2) = 4^2 = 16
所以:x^2 + (1/x^2) = 16-2 = 14
(2)
先求倒数:
(x^4+x^2+1)/x^2
= x^2 + 1 + (1/x^2)
= 14 + 1 = 15
所以:
x^2/(x^4+x^2+1) = 1/15