已知函数f(x)=2sin(2X+π/6),若sinx=4/5,X∈(0,π/2),求函数f(x)的值
问题描述:
已知函数f(x)=2sin(2X+π/6),若sinx=4/5,X∈(0,π/2),求函数f(x)的值
答
因为sinx=4/5 ,所以 cosx = 3/5 (X∈(0,π/2))
所以 sin2x = 2sinx * cosx = 24/25 cos 2x = (cosx)^2 - (sinx)^2 = -7/25
f(x)=2sin(2X+π/6) = 2 cos2x *sin π/6 + 2 sin2x * cosπ/6 = 2 * (-7/25) + 2 *24/25 * √3/2=24√3/25-14/25