y=sin(x+y)求导中的1-cos(x+y)是怎么来的
问题描述:
y=sin(x+y)求导中的1-cos(x+y)是怎么来的
答
两边对x求导有 y'= cos(x+y)(x+y)' = cos(x+y)(1+y')
把他视为y'的方程,解出y'有
y'=cos(x+y)/(1-cos(x+y))
答
求微分:
dy=cos(x+y)(dx+dy),
∴[1-cos(x+y)]dy=cos(x+y)dx,
∴dy/dx=cos(x+y)/[1-cos(x+y)].
答
对x求导
则y'=cos(x+y)*(x+y)'
y'=cos(x+y)*(1+y')
所以y'=cos(x+y)+y'cos(x+y)
移项就有了y'[1-cos(x+y)]=cos(x+y)
y'=cos(x+y)/[1-cos(x+y)]