设m一个小于2006的四位数,存在正整数n,使得m-n为质数,且mn是一个完全平方数,求满足条件的所有四位数m
问题描述:
设m一个小于2006的四位数,存在正整数n,使得m-n为质数,且mn是一个完全平方数,求满足条件的所有四位数m
答
M可以是1156,1296,1369,1600,1764共计五中可能.必须肯定的是,楼上的思路和做法都不错,就是有点计算错误.现改正如下:首先m-n是m和n的最大公约数的倍数(这句话应该不用解释,不理解的话就设m=a*d,n=b*d,d为m和n的最...