《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给五个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,问最小1份为(  

问题描述:

《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给五个人,使每人所得成等差数列,且使较大的三份之和的

1
7
是较小的两份之和,问最小1份为(  )
A.
5
3

B.
10
3

C.
5
6

D.
11
6

设五个人所分得的面包为a-2d,a-d,a,a+d,a+2d,(其中d>0);
则,(a-2d)+(a-d)+a+(a+d)+(a+2d)=5a=100,∴a=20;

1
7
(a+a+d+a+2d)=a-2d+a-d,得3a+3d=7(2a-3d);∴24d=11a,∴d=55/6;
所以,最小的1分为a-2d=20-
110
6
=
5
3

故选A.