a>0 b>0 a+b=1 试用分析法证明(a+1/a)(b+1/b)≥25/4
问题描述:
a>0 b>0 a+b=1 试用分析法证明(a+1/a)(b+1/b)≥25/4
RT
答
由均值不等式
a+b≥2√ab
ab≤1/4
证法一
(a+1/a)(b+1/b)
=(a^2+1)/a*(b^2+1)/b
=(a^2b^2+a^2+1+b^2)/ab
=[a^2b^2+(a+b)^2-2ab+1]/ab
=[a^2b^2+(1-2ab)+1]/ab
=[(ab-1)^2+1]/ab
(ab-1)^2+1≥25/16
0