求曲线y=4,z=(x^2+y^2)/4在点(2,4,5)处切线与x轴正向间的夹角

问题描述:

求曲线y=4,z=(x^2+y^2)/4在点(2,4,5)处切线与x轴正向间的夹角

将y=4(曲面方程) 代入曲面方程Z=1/4(X^2+y^2),即题目给的曲线方程化简的形式:Z=1/4X^2+4 (注:建立空间直角坐标系,可知两曲面的交线为一条曲线)然后Z关于X求导数得到:Z‘=1/2X 然后将点(2,4,5)的横坐标2代入...