某舰艇在A处测得遇险渔船在北偏东45°距离为10海里的C处,此时得知,该渔船沿北偏东105°方向,以每小时9海里的速度向一小岛靠近,舰艇时速21海里,则舰艇到达渔船的最短时间是_小时.

问题描述:

某舰艇在A处测得遇险渔船在北偏东45°距离为10海里的C处,此时得知,该渔船沿北偏东105°方向,以每小时9海里的速度向一小岛靠近,舰艇时速21海里,则舰艇到达渔船的最短时间是______小时.

设两船在B点碰头,由题设作出图形,
设舰艇到达渔船的最短时间是x小时,
则AC=10,AB=21x,BC=9x,∠ACB=120°,
由余弦定理,知(21x)2=100+(9x)2-2×10×9x×cos120°,
整理,得36x2-9x-10=0,
解得x=

2
3
,或x=-
5
12
(舍).
答:舰艇到达渔船的最短时间是
2
3
小时.
故答案为:
2
3