把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O,与D1E1相交于点F. (1)求∠

问题描述:

把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O,与D1E1相交于点F.
(1)求∠OFE1的度数;
(2)求线段AD1的长;
(3)若把三角形D1CE1绕着点C顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部,外部,还是边上?证明你的判断.

(1)如图所示,∠3=15°,∠E1=90°,
∴∠1=∠2=75°,
又∵∠B=45°,
∴∠OFE1=∠B+∠1=45°+75°=120°;
(2)∵∠OFE1=120°,
∴∠D1FO=60°,
∵∠CD1E1=30°,
∴∠4=90°,
又∵AC=BC,∠A=45°
即△ABC是等腰直角三角形.
∴OA=OB=

1
2
AB=3cm,
∵∠ACB=90°,
∴CO=
1
2
AB=
1
2
×6=3cm,
又∵CD1=7cm,
∴OD1=CD1-OC=7-3=4cm,
在Rt△AD1O中,AD1=
OA2+OD12
=
32+42
=5
cm;
(3)点B在△D2CE2内部,
理由如下:设BC(或延长线)交D2E2于点P
则∠PCE2=15°+30°=45°,
在Rt△PCE2中,CP=
2
CE2=
7
2
2

CB=3
2
<
7
2
2
,即CB<CP,
∴点B在△D2CE2内部.