“直线:x+(a-1)y+1=0与直线:ax+2y+2=0平行”的充要条件是_.

问题描述:

“直线:x+(a-1)y+1=0与直线:ax+2y+2=0平行”的充要条件是______.

由题意得:当a=1时,直线x+(a-1)y+1=0的斜率不存在,直线ax+2y+2=0的斜率为-

1
2
,此时两条直线不平行.
当a≠1时,直线x+(a-1)y+1=0变形为y=
1
1−a
x+
1
1−a
,直线ax+2y+2=0变形为y=−
a
2
x−1

若直线x+(a-1)y+1=0与直线ax+2y+2=0平行则两条直线的斜率相等且截距不相等.
所以有
1
1−a
=−
a
2
1
1−a
≠ −1
,解得a=-1
所以“直线:x+(a-1)y+1=0与直线:ax+2y+2=0平行”的充要条件是 a=-1.
故答案为a=-1.