若sina+cosa=1/3.求tana+cota

问题描述:

若sina+cosa=1/3.求tana+cota

∵sina+cosa=1/3.
sin²a+cos²a=1
∴﹙sina+cosa﹚²=1/3³
sin²a+cos²a+2sinacosa=1/9
2sinacosa=-8/9
∴sinacosa=-4/9
∵tana+cota =﹙sina/cosa﹚+﹙cosa/sina﹚
=﹙sin²a+cos²a﹚/sinacosa
=1/sinacosa
=1/﹙-4/9﹚
=-9/4

∵ sina+cosa=1/3
∴(sina+cosa)^2 =(1/3)^2
即sin^2a + cos^2a +2 sinacosa =1/9
1+2 sinacosa =1/9
∴sinacosa =-4/9
∴tana+cota
=sina/cosa+cosa/sina
=(sin^2a + cos^2a )/ ( sinacosa )
=1 / ( sinacosa )
=1÷ (-4/9 )
=-9/4

sina+cosa=1/3平方
(sina+cosa)²=1/9
sin²a+cos²a+2sinacosa=1/9
1+2sinacosa=1/9
2sinacosa=-8/9
sinacosa=-4/9
tana+cota
=sina/cosa+cosa/sina
=sin²a/cosasina+cos²a/sinacosa
=(sin²a+cos²a)/sinacosa
=1/sinacosa
=1/(-4/9)
=-9/4

tana+cota=sina/cosa+cosa/sina=1/(cosasina)
(sina+cosa)^2=1/9
1+2sinacosa=1/9
sinacosa=-4/9
tana+cota=sina/cosa+cosa/sina=1/(cosasina)=-9/4