一道高中不等式证明题

问题描述:

一道高中不等式证明题
已知正数x,y,z满足x+y+z=1
求证:x^2/(y+2z)+y^2/(z+2x)+z^2/(x+2y)>=1/3

由柯西不等式:[(y+2z)+(z+2x)+(x+2y)][x^2/(y+2z)+y^2/(z+2x)+z^2/(x+2y)]>=(x+y+z)^2=1且有(y+2z)+(z+2x)+(x+2y)=3(x+y+z)=3所以x^2/(y+2z)+y^2/(z+2x)+z^2/(x+2y)>=1/3证毕.注:本题为2009年浙江省高考数学自选模...