已知偶函数f(x)=loga|x-b|在(-∞,0)上单调递增,则f(a+1)与f(b+2)的大小关系是( ) A.f(a+1)≥f(b+2) B.f(a+1)>f(b+2) C.f(a+1)≤f(b+2) D.f(a+1)<f(b+2)
问题描述:
已知偶函数f(x)=loga|x-b|在(-∞,0)上单调递增,则f(a+1)与f(b+2)的大小关系是( )
A. f(a+1)≥f(b+2)
B. f(a+1)>f(b+2)
C. f(a+1)≤f(b+2)
D. f(a+1)<f(b+2)
答
∵y=loga|x-b|是偶函数∴loga|x-b|=loga|-x-b|∴|x-b|=|-x-b|∴x2-2bx+b2=x2+2bx+b2整理得4bx=0,由于x不恒为0,故b=0由此函数变为y=loga|x|当x∈(-∞,0)时,由于内层函数是一个减函数,又偶函数y=loga|x-b|在区...