儿子的两道习题及解答理解不了,不知道什么涵义,求详解

问题描述:

儿子的两道习题及解答理解不了,不知道什么涵义,求详解
1.若对于一切实数a,b均有f(ab)=f(a)f(b),且f(0)不等于0,则f(2010)的值?
f(ab)=f(a)f(b),
f(2010*0)=f(0)=f(0)*f(2010)
f(2010)=f(0)/f(0)=1
2.已知A={a,b,c},B={-1,0,1},映射f:A→B满足f(a)+f(b)=f(c),求映射f:A→B的个数
-1+0=-1
-1+1=0
1+0=1
以上加数可以互换
有6个
还有0+0=0
所以共有7个

f(ab)=f(a)*f(b)
令a=2010,b=0
则f(2010*0)=f(2010)*f(0)
由于2010*0=0
所以也就是
f(0)=f(2010)*f(0)
由于f(0)不等于0
所以两边消去f(0)
1=f(2010)明白没?
映射就是对应规则,A到B的映射就是abc分别取B中三个数的值的取法,由于你要满足题中的条件,这三个数能满足的等式是四个,就是
1+0=1.-1+1=0,-1+0=-1.0+0=0
前三个里,两个加数可以调换,而最后一个没法调换.
所以就是七个了.
写出来就是
a→-1,b→0,c→-1;
a→0,b→-1,c→-1;
a→-1,b→1,c→0;
a→1,b→-1,c→0;
a→1,b→0,c→1;
a→0,b→1,c→1;
a→0,b→0,c→0.第一题还是不明白