1/tanα+1/cotα=5/2,求2sin*2(3π-α)-3cos(π/2+α)cos(3π/2-α)+2的值
问题描述:
1/tanα+1/cotα=5/2,求2sin*2(3π-α)-3cos(π/2+α)cos(3π/2-α)+2的值
答
1/tanα+1/cotα=5/2
tanα=2或1/2
sin*2(3π-α)-3cos(π/2+α)cos(3π/2-α)+2
=2sin*2(α)-3cos(α)sin(-α)+2
=[2sin*2(α)+3cos(α)sin(α)]/(sin*2(α)+cos*2(α))+ 2
=[2tan*2(α)+3tan(α)]/(tan*2(α)+1) +2
当tanα=2时,原式= 24/5
当tanα=1/2时,原式=18/5