数列{an}的前n项和sn=100n-n²(n∈N*).设bn=|an|,求数列{bn}的前n项和.
问题描述:
数列{an}的前n项和sn=100n-n²(n∈N*).设bn=|an|,求数列{bn}的前n项和.
答
an=Sn-Sn-1=(100n-n2)-[100·(n-1)-(n-1)2]=101-2n(n≥2).
∵a1=S1=100×1-12=99=101-2×1,
∴数列{an}的通项公式为an=101-2n(n∈N*).
又an+1-an=-2为常数,
∴数列{an}是首项为a1=99,公差d=-2的等差数令an=101-2n≥0,得n≤50.5.
∵n∈N*,∴n≤50(n∈N*).
①当1≤n≤50时,an>0,此时bn=|an|=an,所以{bn}的前n项和Sn′=100n-n2.
②当n≥51时,an<0,此时bn=|an|=-an,
由b51+b52+…+bn=-(a51+a52+…+an)=-(Sn-S50)=S50-Sn,
得数列{bn}的前n项和为
Sn′=S50+(S50-Sn)=2S50-Sn=2×2
500-(100n-n2)=5 000-100n+n2.
由①②得数列{bn}的前n项和为Sn′=