Y=[(x^3-x^2)^1/3]/(x+x^2) 用取对数求导法求它的导数

问题描述:

Y=[(x^3-x^2)^1/3]/(x+x^2) 用取对数求导法求它的导数

lny=1/3ln(x^3-x^2)-ln(x+x^2)
y'/y=1/3*1/(x^3-x^2)*(3x^2-2x)-(1+2x)/(x+x^2)
y'/y=(3x^2-2x)/3(x^3-x^2)-(1+2x)/(x+x^2)
将Y=[(x^3-x^2)^1/3]/(x+x^2) 带入上式 得
y'=[(3x^2-2x)/3(x^3-x^2)-(1+2x)/(x+x^2)]*[(x^3-x^2)^1/3]/(x+x^2)