证明:抛物面z=x^2+y^2+1上任一点处的切平面与曲面z=x^2+y^2所围成的立体体积为一常数
问题描述:
证明:抛物面z=x^2+y^2+1上任一点处的切平面与曲面z=x^2+y^2所围成的立体体积为一常数
答
证明:抛物面z=x^2+y^2+1上任一点处的切平面与曲面z=x^2+y^2所围成的立体体积为一常数