(2lg2+lg3)/[1+(1/2)lg0.36+(1/3)lg8]等于什么

问题描述:

(2lg2+lg3)/[1+(1/2)lg0.36+(1/3)lg8]等于什么

(2lg2+lg3)/[1+(1/2)lg0.36+(1/3)lg8]=(lg2²+lg3)/[1+(1/2)lg0.6²+(1/3)lg2³]=lg(4×3)/(lg10+lg0.6+lg2)=lg12/lg12=1(注:lgM+lgN=lg(MN),lgN^n=nlgN,lg10=log(10)10=1)1 (1/2)lg0.6² (1/3)lg2³是怎么化成lg10 lg0.6 lg2的?1=log(10)10=lg10.....................log(a)a=1(a>0)(1/2)lg0.6² =(1/2)*2lg0.6=lg0.6....................课本上应该有类似的公式log(a)N^n=nlog(a)N(1/3)lg2³=(1/3)*3lg2=lg2