1.求函数y=-2x^2+|x|的值域 2.设a,b是二次方程x^2-2kx+k+20=0的两个实数根当x为何值时(a+1)^2+(b+1)^2

问题描述:

1.求函数y=-2x^2+|x|的值域 2.设a,b是二次方程x^2-2kx+k+20=0的两个实数根当x为何值时(a+1)^2+(b+1)^2
2.设a,b是二次方程x^2-2kx+k+20=0的两个实数根,当x为何值时(a+1)^2+(b+1)^2有最小值?最小值为多少?

1 令0=-2x^2+|x|,当x≥0时,x=0,当x<0时,x= -1/2,可知,当x≥0时,-2x^2>|x|,所以,函数单调递减;同理当x≤ -1/2时,函数单调递减;
通过上面的计算发现,当x=0和-1/2时,y=0.所以猜想-1/4是y=-2x^2+|x|在【-1/2,0】的对称轴,这个证明简单,取两个值,-1/4+n,-1/4-n,代入y=-2x^2-x,(x