三角形ABC中,A',B',C'分别在BC,CA和AB上,一直AA',BB',CC'相交一点O,b并且AO/OA'+BO/OB'+CO/OC'=92,
问题描述:
三角形ABC中,A',B',C'分别在BC,CA和AB上,一直AA',BB',CC'相交一点O,b并且AO/OA'+BO/OB'+CO/OC'=92,
试求:AO/OA' 乘以 BO/OB' 乘以CO/OC'的值
答
首先普及一个定理吧.由AA',BB',CC'相交一点O可得:OA'/AA'+OB'/BB'+OC'/CC'=1、那么我们假设AO/OA'=x,BO/OB'=y,CO/OC'=z、则OA'/AA'=1/(x+1)OB'/BB'=1/(y+1)OC'/CC'=1/(z+1).由题意有x+y+z=92及1/(...